La mole e il numero di moli

Il concetto di mole venne utilizzato per la prima volta dal famoso chimico tedesco Wilhelm Ostwald dopo il 1894. Oggi la mole costituisce l’unità di misura delle quantità di materia nel Sistema Internazionale (SI).
La mole è costituita da un insieme di oggetti elementari pari al numero di Amedeo Avogadro. Tale numero, che indicheremo con \(N \), vale circa \(6.022 \times 10^{-23} \), pertanto il numero di oggetti con cui si ha a che fare supera il valore di seicentoduemila miliardi di miliardi.

Se mettiamo assieme \(N \) atomi di Carbonio 12 \((^{12}\text{C})\) noteremo di aver raggiunto una massa macroscopica pari 12 grammi di carbonio, oppure se mettiamo assieme \(N \) molecole di \(\text{H}_2\text{O} \) noteremo di aver raggiunto 18 grammi di acqua. La deduzione logica è che un numero di Avogadro di oggetti chimici (atomi, molecole, ioni), cioè una mole di tali oggetti, corrisponde ad una quantità macroscopica, misurata in grammi, numericamente pari alla massa relativa \((u)\) degli oggetti chimici microscopici presi in considerazione.

La definizione ufficiale di mole è la seguente:
“La mole è la quantità di sostanza che contiene tante entità elementari quanti sono gli atomi in 0.012 kg di Carbonio 12 \((^{12}\text{C})\)”. Quando si usa la mole, deve essere specificata la natura delle entità elementari, che possono essere atomi, molecole, ioni, elettroni, altre particelle o gruppi particolari di tali particelle.
La massa molare dell’entità utilizzata è la massa macroscopica di una mole di entità elementari, così la massa molare di una specie chimica è la massa macroscopica di una mole di molecole (ioni o gruppi atomici). La massa molare ha come unità di misura il grammo per mole \((\text{g mol}^{-1})\) ed è, come già detto, numericamente uguale alla massa relativa \((u)\) delle entità microscopiche. Pertanto la massa molare del \(^{12}\text{C} \) è 12 g mol\(^{-1}\) mentre la massa molare dell’acqua è 18 g mol\(^{-1}\).

NOTA: Mentre per il \(^{12}\text{C} \) il valore della massa molare, per definizione, è 12 g mol\(^{-1}\), per quanto riguarda l’acqua è possibile trovare un valore molto più preciso (18.016 g mol\(^{-1}\)) anche se a noi va benissimo il 18.

Calcolo del numero di moli

Supponiamo di avere una massa di una certa sostanza pura espressa in grammi e di volerne calcolare la quantità di materia espressa in moli. Per
ricavare l’espressione da usare utilizziamo il metodo delle proporzioni in cui il classico “sta” l’ho sostituito con il più espressivo “corrisponde”;

“Una mole di molecole corrisponde ad una massa in grammi pari alla massa molare MM di una specie, come x sono le moli che corrispondono ad una data massa (in grammi) della stessa specie”:

1 mole : MM = x : massa reale in grammi m(g)

pertanto il numero di moli corrispondenti alla massa in grammi (x) saranno

\[x = n.mol = \frac{m(g) \times 1}{MM} \]

Non considerando il moltiplicatore unitario avremo

\[n.mol = \frac{m(g)}{MM} \quad \text{Dimensionalmente: } \frac{g}{g\text{ mol}^{-1}} = \text{mol} \]

Tradotto: per una specie chimica, con MM numericamente pari al peso molecolare relativo espresso in unità di massa atomica (PM), anche se non corretta dal punto di vista dimensionale, possiamo usare comunque la seguente espressione (ma ricordatevi il problema dimensionale):

\[n.mol = \frac{m(g)}{PM} \quad \text{Dimensionalmente scorretta} \]

La percentuale degli elementi in un composto puro

Supponiamo di avere una certa quantità di un composto puro costituito da molecole. Sappiamo che si tratta di una enorme quantità di oggetti (molecole) tutte uguali nelle quali viene rispettato il rapporto tra il numero di atomi dei diversi elementi che compongono la specie. Se invece di sostanze molecolari abbiamo a che fare con composti ionici o solidi covalenti che non hanno molecole, sappiamo che viene mantenuto il rispetto nel rapporto di composizione in quella che chiamiamo formula chimica. Pertanto, se intendiamo
conoscere la percentuale di un elemento in un composto chimico puro, possiamo fare riferimento alla quantità minima del composto, cioè la sua formula. Procediamo con due semplici esempi (userò valori arrotondati per semplicità).

Esempio 1.
“Calcolare la composizione percentuale degli elementi presenti nel benzene”. Procediamo scrivendo la formula, poi verifichiamo la massa relativa dei singoli elementi quindi calcoliamo la massa relativa del benzene come somma.

\[\text{C}_6\text{H}_6 \]

\[
\begin{align*}
6 \text{ C} & \quad 6 \times 12 = 72 \\
6 \text{ H} & \quad 6 \times 1 = 6 \\
\text{PM} & \quad = 78 \text{ \(u\)}
\end{align*}
\]

Il rapporto tra la massa di un singolo componente e la massa totale nella formula è la frazione del componente considerato rispetto l’unità di massa (parte rispetto al tutto). Moltiplicando questa frazione per cento si ottiene la quantità del componente rispetto a 100 unità di massa: questa è la definizione del percento in massa.

\[
\% \text{C} = \frac{m\text{C}}{m\text{C}_6\text{H}_6} \times 100 = \frac{72}{78} \times 100 = 92.3\% \\
\% \text{H} = \frac{m\text{H}}{m\text{C}_6\text{H}_6} \times 100 = \frac{8}{78} \times 100 = 7.7\%
\]

Esempio 2.
“Calcolare la composizione percentuale degli elementi presenti nel solfato di sodio”.

\[\text{Na}_2\text{SO}_4 \]

\[
\begin{align*}
2 \text{ Na} & \quad 2 \times 23 = 46 \\
1 \text{ S} & \quad 1 \times 32 = 32 \\
4 \text{ O} & \quad 4 \times 16 = 64 \\
\text{PM} & \quad = 142 \text{ \(u\)}
\end{align*}
\]

\[
\begin{align*}
\% \text{Na} & = \frac{m\text{Na}}{m\text{Na}_2\text{SO}_4} \times 100 = \frac{46}{142} \times 100 = 32.4\% \\
\% \text{S} & = \frac{m\text{S}}{m\text{Na}_2\text{SO}_4} \times 100 = \frac{32}{142} \times 100 = 22.6\% \\
\% \text{O} & = \frac{m\text{O}}{m\text{Na}_2\text{SO}_4} \times 100 = \frac{64}{142} \times 100 = 25.0\%
\end{align*}
\]
CONCETTI BASILARI DI STECHIOMETRIA NELLE REAZIONI CHIMICHE

Una reazione chimica deve essere scritta con simboli particolari. Ad esempio, una reazione che avviene completamente, cioè consumando completamente il reagente in difetto, viene indicata con una singola freccia verso destra. Sul lato sinistro della freccia si sistemano le formule dei cosiddetti reagenti e, alla destra della freccia si pongono le formule dei prodotti. Le reazioni devono essere bilanciate, nel senso che il numero di atomi presenti come reagenti deve uguagliare quello presente nei prodotti.

La simbologia utilizzata sotto forma di formule molecolari può essere traslata a quantità macroscopiche in quello che abbiamo chiamato moli. Per intenderci le reazioni avvengono tra molecole e noi, macroscopicamente, traduciamo questo fatto utilizzando le moli. Vi invito, pertanto, a non considerare mai la massa quando si deve studiare una reazione, e di convertire i dati eventualmente forniti in massa rapidamente in moli.

Supponiamo di avere una semplice reazione per la quale indichiamo solo la condizione stechiometrica, disinteressandoci per il momento dei reali composti che, in questo caso, andremo ad indicare simbolicamente con le prime lettere dell’alfabeto in maiuscolo. Supponiamo ora di mettere a reagire 0.5 moli di A con 0.5 moli di B secondo il seguente schema di reazione:

\[
\begin{array}{c}
A + B & C + D \\
\text{Iniz.} & 0.5 & 0.5 \\
\end{array}
\]

Data la stechiometria proposta, cioè che una mole di A intende reagire con una mole di B, sarà anche vero che 0.5 moli di A reagiranno completamente con 0.5 moli di B e, di conseguenza, sempre osservando la stechiometria del processo, si formeranno 0.5 moli di ciascun prodotto:

\[
\begin{array}{c}
A + B & C + D \\
\text{Iniz.} & 0.5 & 0.5 \\
\text{React.} & 0.5 & 0.5 & - & - \\
\text{Form.} & - & - & 0.5 & 0.5 \\
\text{Fine} & 0 & 0 & 0.5 & 0.5 \\
\end{array}
\]

Come potete osservare, nel particolare caso proposto, la situazione finale consiste nel consumo totale dei reagenti e la formazione dei prodotti.

Supponiamo adesso, per la stessa reazione precedente, di proporre una variante sulle quantità dei reagenti (già tradotti in moli)
A + B → C + D

Iniz. 1.5 0.5

Come potete vedere, la situazione iniziale è tale per cui le moli dei due reagenti sono diverse. Le 1.5 moli di A vorrebbero reagire con 1.5 moli di B come recita la stechiometria del processo, ma ciò è impossibile perché sono presenti solo 0.5 moli di B, pertanto solo 0.5 moli di A potranno reagire con altrettante moli di B, e la rimanente parte di A rimarrà come eccesso. Ecco lo schema:

A + B → C + D

Iniz. 1.5 0.5
React. 0.5 0.5 - -
Form. - - 0.5 0.5
Fine 1 0 0.5 0.5

In definitiva, nelle reazioni che avvengono completamente verso destra, è il consumo complessivo del reagente in difetto che determina la quantità di prodotti che si possono formare.

Adesso cambiamo la stechiometria del processo reattivo e introduciamo le quantità di reagenti sotto indicate:

A + 2B → 2C + D

Iniz 1 1

In questo caso la mole introdotta di A vorrebbe reagire con due moli di B, ma non le trova, mentre, inversamente, la mole di B intende reagire con una quantità pari alla sua meta (cioè 0.5 moli) di A e questo è possibile. Pertanto quello che succede è impostato nel seguente riquadro:

A + 2B → 2C + D

Iniz. 1 1
React. 0.5 1 - -
Form. - - 1 0.5
Fine 0.5 0 1 0.5

Nel caso proposto, il reagente in difetto è quello indicato con la lettera B, anche se le quantità molari iniziali dei due reagenti sono le stesse.

Quando i coefficienti delle reazioni sono un poco più complicati e le quantità molari sono numeri con decimali, il ragionamento mentale può essere più difficile; in questi casi vi consiglio di utilizzare un doppio ragionamento con il calcolatore tra le mani. Qui di seguito vi propongo del genere.
Lo schema di reazione in questione è il seguente con le quantità molari iniziali indicate sotto i reagenti:

\[
\begin{array}{ccc}
\text{Iniz.} & \text{Reag.} & \text{Fine} \\
3 A & + & 2 B & \rightarrow & 2 C & + & D \\
1.26 & 0.7 & & & & & \\
\end{array}
\]

In questo caso, con molta calma, è bene procedere nella sequenza logica indicata dallo schema di reazione secondo il ragionamento che segue, dove al posto del classico “sta” delle proporzioni uso il più espressivo “reagirebbero”.

Primo tentativo: (A:B=A:B)

La stechiometria del processo indica che 3 moli di A reagirebbero con 2 moli di B, ne segue che le moli realmente presenti di A reagirebbero con \(x\) moli di B.

3 moli di A : 2 moli di B = 1.26 moli di A : \(x\) moli di B

pertanto la quantità \(x\) vale

\[x = 1.26 \times \frac{2}{3} = 0.84\]

Non ci è andata bene perché non sono presenti 0.84 moli di B. Allora si deve procedere in maniera inversa nel proporre la proporzione:

Secondo tentativo: (B:A=B:A)

La stechiometria del processo indica che 2 moli di B reagirebbero con 3 moli di A, ne segue che le moli realmente presenti di B reagirebbero con \(x\) moli di A:

2 moli di B : 3 moli di A = 0.7 moli di B : \(x\) moli di A

pertanto la quantità \(x\) vale

\[x = 3 \times 0.7 / 2 = 1.05\]

In questo caso le 0.7 moli di B consumeranno 1.05 moli di A e rimarranno, pertanto, un numero di moli di A in eccesso pari alla differenza (1.25 - 1.05 = 0.2)

\[
\begin{array}{ccc}
\text{Iniz.} & \text{Reag.} & \text{Fine} \\
3 A & + & 2 B & \rightarrow & 2 C & + & D \\
1.26 & 0.7 & & & & & \\
1.05 & 0.7 & & & & & \\
\text{Form.} & - & - & 0.7 & 0.35 \\
\text{Fine} & 0.2 & 0 & 0.7 & 0.35 \\
\end{array}
\]

Si noti che la quantità in moli che governa la reazione è quella del reagente in difetto, pertanto le moli di C che si formeranno saranno uguali a quelle di B, mentre le moli di D saranno esattamente la metà (si osservi la corrispondenza stechiometrica dei coefficienti).